UNCOVERING THE **HIGH-ENERGY EMISSION** OF JETTED AGN AT COSMIC DAWN

High-redshift blazars (z>3) detected at gamma-ray energies enable us to study the accretion processes and black hole growth in the early Universe. However, their detection is difficult, and only about a dozen have been seen with the Fermi-LAT. We can utilize blazar flares as unique opportunities to detect and characterize the gamma-ray emission from high-z blazars and to gather contemporaneous multiwavelength observations to interpret their spectral energy distribution & physical parameters. In addition, the combination of gamma-ray and VLBI observations is a unique tool to study the location and physical mechanisms of the high-energy emission in blazar jets.

For these reasons, we designed a program to find flares in high-z blazars in real time, which is suitable to trigger observations the electromagnetic across spectrum, by using public Fermi-LAT data. Here, we present our findings for two blazars with z > 4.

Andrea Gokus¹, Markus Böttcher², Manel Errando¹, Ivan Agudo³, Petra Benke^{4,5}, Florian Eppel⁵, Leonid I. Gurvits⁶, Jonas Heßdörfer⁵, Svetlana Jorstad⁸, Matthias Kadler⁵, Yuri Y. Kovalev⁴, Michael Kreter², Mikhail Lisakov^{9,4}, Fe McBride¹⁰, Roopesh Ojha¹¹, Jorge Otero Santos³, Eduardo Ros⁴, Florian Rösch⁵, Joern Wilms¹²

¹WUSTL, ²NWU Potchefstroom, ³IAA Granada, ⁴MPIfR, ⁵JMU Würzburg,⁶JIVE, ⁷TU Delft, ⁸BU, ⁹PUCV Chile, ¹⁰Bowdoin College, ¹¹NASA HQ, ¹²Remeis-observatory

HIGH-Z BLAZAR MONITORING

- Our monitoring campaign covers 83 blazars that are listed in the BZCAT [1] with a redshift of z > 3
- Using public Fermi-LAT data to detect flares by high-z blazars in real time
- Trigger threshold for follow-up observations: TS value of 25 ($\sim 5\sigma$) for time range of 30 days (based on strategy for a posteriori detections by Kreter et al. [2])

GAMMA-RAY BLAZARS WITH REDSHIFT > 4

- First report of redshift z = 4.3 in 1995 [3]
- Source shows extended radio and X-ray emission
- Included in Fermi-LAT catalog (4FGL)
- Flare detection by our pipeline on 4 February 2022 [4]
- accepted in ApJ

- First detection as highredshift source (z=4.72) in 1998 [6]
- Also exhibits extended X-ray and radio emission
- Gamma-ray emission reported [8,2], but not a source of the 4FGL
- Flare detected in Dec 2023 \rightarrow Paper in preparation

Andrea Gokus is a McDonnell Postdoctoral Fellow at WashU in Saint Louis (USA). She researches high-energy processes in jetted AGN using multiwavelength data. In addition, she is passionate about public outreach, sustainability, SciFi literature & shows, and swing dance.

Fermi-LAT Credit: NASA

TXS 1508+572

taken at 144 MHz Credit: [5]

B3 1428+422

MULTIWAVELENGTH CAMPAIGNS

- We analyzed additional data taken in
- X-rays: XMM-Newton, Swift, and NuSTAR
- > Optical/IR: ZTF, NEOWISE, Sierra Nevada, Perkins Obs., Steward Obs.
- Radio: Effelsberg, VLBA, and GBT
- Gamma-ray luminosity of TXS 1508+572 flare comparable to brightest blazar flares
- Very high black hole masses (> 10⁹ M_☉) needed to explain signatures from accretion disk and high-energy emission that is modeled with **Inverse Compton emission**

Modeling of the broadband SED of TXS 1508+572 during the quiet (blue) and flaring (red) state. Credit: Gokus et al. [9]

SUMMARY & OUTLOOK

- Our pipeline enables contemporaneous MWL observations of high-redshift blazars during gamma-ray flares
- We conducted the first VLBI monitoring campaign for a flaring high-redshift gammaray blazar, see Benke et al. [10]
- Our full paper on the 2022 flare from TXS 1508+572 includes also an analysis of X-ray spectra and MWL variability, see Gokus et al. [9]
- MWL study of flare by B3 1428+422 ongoing

Contact info:

🔀 gokus@wustl.edu

🥣 @andreagokus

VLBI CAMPAIGN FOR TXS 1508+572

- First VLBI follow-up campaign of a flaring high-redshift blazar
- Four epochs cover 15, 22 & 43 GHz \rightarrow source-intrinsic frequencies: 80, 117, and 228 GHz \rightarrow probe regions closer to central supermassive black hole
- Morphological changes visible on monthly time scales
- Apparent speed of jet component (at 22 GHz): 0.13 ± 0.04 mas/yr
- Coreshift evolves as a new component travels through the core
- Origin of new component not connected to flare in 2022; must have been produced between 2016 and 2019

Effelsberg. Credit: Benke et al. [10]

MCDONNELL CENTER

FOR THE SPACE SCIENCES

References:

- [1] Massaro E., et al., 2015, Ap&SS, 357, 75
- [2] Kreter M., et al., 2020, ApJ 903, 128
- [3] Hook I. M., et al., 1995, MNRAS 273, L63
- [4] Gokus A. et al., 2022, Atel #15202
- [5] Kappes A., 2022, A&A, 663, A44
- [6] Hook I. & McMahon R. G., 1998, MNRAS, 294, L7
- [7] Cheung C. C. et al., 2012, ApJL, 756, 1
- [8] Liao N. H., 2018, ApJL, 865, L17
- [9] Gokus A. et al., 2024, ApJ in press, arXiv:2406.07635

[10] Benke P., et al., 2024, A&A in press, arXiv:2406.03135